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On Some Annihilating and Coalescing Systems

Alexei Ermakov,1 Balint Toth,2 and Wendelin Werner3

Received September 23, 1997; final March 27, 1998

In the present paper we continue the investigation of the so-called coalescing
ideal gas in one dimension, initiated by Ermakov. The model consists of point-
like particles moving with velocities +1 which coalesce and choose a fresh
velocity with the same distribution when colliding. In the previous paper various
identities in law were derived for the infinitely extended system. In the present
paper we consider the scaling limit of the model in its various guises. The main
result is the derivation of the scaling limit (invariance principle) for the joint law
of an arbitrary finite number of individual particle trajectories in this system. We
also obtain the scaling limit of the density profile of the system, which strongly
resembles earlier results of Belitsky and Ferrari.

KEY WORDS: Interacting particle systems; coalescing and annihilating ideal
gas; ballistic coalescence and annihilation; random walks; Brownian motion;
hydrodynamic limit; invariance principles.

1. INTRODUCTION

In the present paper we study the asymptotic behaviour of the time
evolution of one-dimensional systems of coalescing/annihilating ballistic
particles. The two basic models discussed are the following:

(1) Coalescing Ideal Gas: at t = 0 at every point of integer coordinate
there is a particle. Particles have independent identically distributed
velocities vi, with distribution P(V I= ±1) = 1/2. The time evolution is the
following: particles move rectilinearly and uniformly till first collision,
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when two particles collide they coalesce into one single particle, this single
particle chooses a new velocity with the same distribution, independently
from the full past, and continues flying with this new velocity till the next
collision, when the same procedure is repeated. The first author studied this
process (of infinitely many particles) in ref. 7. The scaling limit of the
process (in its various guises) was not treated there.

(2) Annihilating Ideal Gas: the initial conditions are the same, but
the time evolution differs. Now, when two particles collide they annihilate.
This process was studied by Belitsky and Ferrari in ref. 2, where they prove
a scaling limit for the time evolution of the density profile of the system.

The two models can be formulated in a unified way: The particles,
besides their i.i.d. +1 velocities, also have i.i.d. masses M i>0, ie Z, which
are independent of the velocities. Call mi = vi . M, the charge of particle i.
Now, define the dynamics in the following natural way: when two particles
collide they form one new particle with charge equal to the sum of the two
incoming charges. I.e.:
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If ever m(out) = 0, then the two particles annihilate. Now, if the initial
masses of particles are identically Mi = 1 then clearly we get the model of
annihilating ideal gas studied by Belitsky and Ferrari. On the other hand,
it is easy to see that if initially the masses have i.i.d. exponential distribu-
tions of parameter 1 then this model will mimic the coalescing ideal gas.
Note, that the dynamics now is strictly deterministic. The randomness of
the dynamics formulated in the first paragraph is now encoded in the ran-
dom initial masses. This construction will be clearly explained in Section 3.

In Section 3 we consider the charge-density profile (or the profile
function) ot , i.e., the function x -> the total charge between 0 and x at
time t. It is essentially the same object as the "surface profile" introduced
for the annihilating ideal gas by Belitsky and Ferrari.(2) The authors of
ref. 2 have found the scaling limit of the surface profile (as t -> o). We
show that the profile function of coalescing ideal gas obeys the same scaling
limit as that of annihilating ideal gas. This scaling limit can be formulated
as an invariance principle for the profile function (see Theorem 4 in this
paper). This is just a simple remark to the peeper. (21)

We then study in more detail the limiting process of profile functions.
We prove, inter alia, that in the scaling limit, the set occupied by particles



has Hausdorff dimension 1/2 and the profile function is exactly the dis-
tribution function of the "flat" 1/2-Hausdorff measure on this set. These
statements are straightforward translations of well-known facts about
sample path properties of one-dimensional Brownian motion.

We also study the scaling limit of individual trajectories in the coalescing
ideal gas. Note that this question makes sense only in the case of the
coalescing system: in the annihilating gas individual trajectories die out at
the first collision. We prove that the properly rescaled trajectory of a
tagged particle in the coalescing ideal gas converges in distribution to the
"Brownian flight process" n( .) defined as follows:

where W denotes a one-dimensional Brownian motion started from 0. We
also prove joint invariance principles for the trajectories of any finite
number of tagged particles in the system of coalescing ideal gas (note the
emphasis on "joint" and "trajectories"). Another result worth mentioning
here is the limit law for the rescaled coalescence time of any two particles
in the system.

The paper is structured as follows: In Section 2 we reformulate the
basic construction of Belitsky and Ferrari. In Section 3 we give precise
mathematical meaning to what has been said in this introduction, i.e.,
we formulate the models of annihilating/coalescing ideal gas, in a joint
formalism. In Section 4 we study in detail the limiting object, what we call
"Brownian continuous system." In Section 5 we formulate the invariance
principle for the rescaled profile functions. In the last three sections we
study the particle path properties of coalescing systems. These sections
make a genuinely new contribution, while Sections 2 to 5 may be con-
sidered just as remarks to the paper of Belitsky and Ferrari. In Section 6
we give a general definition of particle paths for a coalescing system and
study their properties. In Section 7 we deal with particle paths of the
Brownian continuous system, or "coalescing flight processes," a system of
uncountably many particles at any time. Finally, in Section 8 we prove the
invariance principle for the individual trajectories in coalescing ideal gas.

Notation

D(R) denotes the set of cadlag real-valued functions on R. Throughout
this paper, we will use only the topology on D(R) induced by uniform
convergence on compact intervals. A continuity statement on the space
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D(R) without any further detail will mean continuity with respect to this
topology.

C(R) denotes the set of continuous real-valued functions on R (also
endowed with the topology induced by uniform convergence on compact
intervals).

When A and B are two sets, T(A, B): = BA will denote the set of
mappings of A into B. We will for instance use the set T ( R + , D(R)).

If a > 0, then hx denotes the standard oc-Hausdorff measure in R
(see e.g., ref. 12 for a precise definition).

2. THE DETERMINISTIC SEMI-GROUP

Consider a cadlag function o E D(R). For all t>0, we define the func-
tion S t ( o ) as follows:

Note that St maps C(R) into itself and D(R) into itself.
In the following proposition we list some straightforward properties

of St.

Proposition 1. For any o e D(R):

(i) For all t^0 and s>0, S t ( S , ( & ) ) = St + s ( O ) . In other words,
(St)t»o is a semi-group of transformations.

(ii) For all t>0, St(0) has locally bounded variation. Moreover,
there exist two strictly increasing sequences (xn)neZ and ( y n ) n e z such that
l i m n _ Q O x n = - l im n + 0 0 x n = -co and for all neZ, xn<yn<xn + l and
S,(P) is non-decreasing in [xn, yn] and non-increasing in [yn,x n+1].

(iii) For all a >0, S , (aO) = aS t(0).

(iv) For all a>0, define Aa: £>(R) -»• Z)(R) by (/If l0)(x) = ^(ax).
Then

We now state some "contractivity" properties of S., which follow
immediately from the fact that for x e R, and for any O, *F in D(R),



Proposition 2. (i) Let T(R + , D ( R ) ) be the set of trajectories of
profile functions endowed with the "uniform uniform" topology induced by
uniform convergence on compact subsets of R + x R.

The mapping V: D(U) -> T(U+, D (R) ) defined by
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is continuous. In particular, for any fixed t > 0, St: D ( R ) ->D(R) is
continuous.

(i i) For any fixed o e C ( R ) the mapping R+ 3 t -> St o € C ( R ) is
continuous, (the same is also true for O E D(R) endowed with Skorokhod
topology, which we otherwise do not consider in this paper).

3. DISCRETE EXAMPLES

3.1. Annihilating Particles

Consider now the following deterministic setting: Define two disjoint
locally finite subsets of R: A+ and A- . Assume that at time 0, at each point
of A+ (respectively A-) particle starts with unit speed to the right (respec-
tively to the left), and when two particles meet, they annihilate. This type of
model has been studied by Fisch, (8) Belitsky-Ferrari(2) and it is closely related
to the so-called three-colour cellular automaton. As pointed out in ref. 2 it is
very easy to express the positions of living particles at time t > 0 using St.

Define the measure

and the right-continuous function of locally bounded variation 00: R -> R,
such that o0(0) = 0 and that the derivative o0 (in the sense of distribu-
tions) of o0 is m0.

o0 is a step-function with jumps of magnitude +l. It is straight-
forward to check that for any t > 0, the function ot : = St ( o 0 ) is also a step-
function, with jumps of magnitude +1. In fact, it is very easy to see that
if we define
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then At (respectively At , At ) correspond to the set of particles living at
time t (respectively living at time t that move to the right, living at time t
that move to the left).

3.2. Coalescing Particles

Assume now that we modify the previous model in the following way:
Each particle is assigned a (positive or negative) charge and moves to the
right or to the left at unit speed according to the sign of their charges: It
moves to the right if its charge is positive and it moves to the left if the
charge is negative. When two particles of charges m + and m - collide, then
they stick together and become a single particle of charge m+ + m ~ that
moves on with unit speed to the left or to the right depending on the sign
of m+ + m - . Again, once the initial data (the locally finite set of particles
A0 with their respective charges mx) is given, this system evolves deter-
ministically. We define this time

and the function o0 as above. In this case again, the system at time t is
described by ot := St(o0). More precisely, it is easy to check that the set
of particles (of non-zero charge) living at time t is the set

and that the charge of the particle located at x e At at time t is

An interesting subcase here is the case where the absolute value of the
charges of the initial particles are independent identically distributed
variables, with an exponential law of parameter 1. Note that when two
particles meet, their charges have different signs; hence,

• The "outcoming" particle moves to the left (resp. to the right) with
probability 1/2.

• The absolute value of the charge of the outcoming particle is again
an exponentially distributed random variable of parameter 1, which is
independent of the charges and velocities of all other particles living at the
same time, and also of its own velocity. Indeed, elementary computations
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show that if X and Y are two independent random variables with a com-
m,on exponential distribution of parameter 1, then sgn(X - Y) and | X— Y|
are independent and have the distributions P(sgn(X— Y) = + 1) = 1/2,
P( |X- Y | < t ) = l - e-'.

In other words, the law of (At , t > 0) is exactly that corresponding to
the positions of coalescing particles moving at unit speed that randomly
choose (with probability 1/2-1/2) whether they go to the right or to the left
when they collide (and coalesce). This system, with initial state A0 = z_, is
also mentioned in Fisch(8) and has been studied in Ermakov,(7) where it
was called coalescing ideal gas. Let us stress that the system of coalescing
particles which randomly choose their direction when they coalesce is not
deterministic, but it is equivalent to the deterministic system of particles of
i.i.d. exponential randomly signed mass. In the latter deterministic case, all
the collision rules are contained in the information provided by the initial
data, i.e., the charges of particles living at time 0.

We shall see how this interpretation of the system in terms of St

provides an economic way of deriving limit results.

4. THE BROWNIAN CONTINUOUS SYSTEM

We now briefly study the continuous counterpart of the systems that
we just described. This continuous system was introduced in ref. 2. In the
next sections, we shall see that it corresponds to the scaling limit of these
discrete systems.

Suppose now that (Bx , x e R) is a two-sided linear Brownian motion
with  B0 = 0  ( i .e . ,  (Bx ,  x>0)  and (B_x,  x  >0)  are  two independent
Brownian motions started from 0). Define then, for all t >0,

This measure mt can be loosely speaking interpreted as a regularisation of
the white noise.

Let us stress again that the only random part comes from the initial
data o0 = B, and that the evolution of ot given o0 is then deterministic.

As mentioned in Section 2, 0 is of bounded variation for all t > 0. In
particular, one can define the signed measure mt = ( o t ) ' (in the sense of
distributions) defined on intervals as
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We now state some results that give some insight into the process
(ot, t > 0 ) . As mt is a signed measure (when t > 0), it is the difference of two
non-negative measures m+ and m- so that mt = m+ — m-

.

We now briefly recall the definition of the 1/2-Hausdorff measure (see
e.g., ref. 12, Section 10 for details). Let A c R denote a bounded set, and for
any £>0, and any covering of A by intervals (An) of respective length an

such that an < £, consider the sum £n a^. The infimum (when e>0 is
fixed) of these sums (the infimum is taken over all such coverings) is
denoted by h 1 / 2 ( A ) . When e-»0, h 1 / 2 ( A ) increases to some (possibly
infinite) value hl/2(A) called the 1/2-Hausdorff measure of A. In the special
case where hl/2(A) e (0, + 0), then the Hausdorff dimension of A is 1/2. If
A c R is unbounded and if for all large enough x, the Hausdorff dimension
of A n [ — x, x] is 1/2, then one says that the Hausdorff dimension of A is
also 1/2.

Theorem 3. (i) For all t > 0, the supports A,, A+ and A- of mt,
fi~ and />if are sets of Hausdorff dimension 1/2, and of locally finite
1/2-Hausdorff measure.

(ii) The measure m+ (resp. m-) is exactly the 1/2-Hausdorff measure
supported by the set A+ (resp. A~). In other words, if the interval
/= (a, b) does not intersect A~ (i.e., that <P, is non-decreasing on /), then
ot , (b) — 0,(a) is precisely the 1/2-Hausdorff measure of Af n/.

The sets A* and A~ should be interpreted as the sets of particles
moving to the right and to the left at time t. As opposed to the previous
discrete cases, these sets are uncountable, and their "mass" is measured by
the 1/2-Hausdorff measure.

Proof of Theorem 3. Let us first recall some well-known facts
concerning the level-sets of Brownian motion. Define the one-dimensional
Brownian motion (Wx, x> 0) started from 0 and denote its local time at
level 0 and time x by 4. Define also for all x^Q,

The law of ((W*-WX, W*),x^Q) is identical to that of ((\Wx\,fx\
x^Q) (see e.g., ref. 14, VI. (2.3)). On the other hand, the local time at 0 of
Brownian motion can be exactly defined as the 1/2-Hausdorff measure of
the set of zeros of this Brownian motion (see ref. 11, Section 2.5); more
precisely, for all x^O,
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Combining these two facts shows immediately that
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Let us now come back to the actual proof of Theorem 3: We now say that
* is a point of right-increase (resp. left-increase) of <t>, if and only if there
exists £>0 such that such that for all ye(x, x + e) (resp. ye(x — s, x))
<P,(y)><P,(x) (resp. <P,(y) <<t>,(x)). Note that points of right-increase and
left-increase play here a different role due to the non-symmetry of the
definition of St (we used inf and not sup).

Clearly, the definition of <P, implies that x e R is a point of right-
increase of <P, if and only if, for all y e (x — t, x + t~\, By> Bx_,.

Let us now define the set

We are now going to show that H, and A* differ by at most countably
many points. Clearly, H, c A r+. Suppose for a moment that x e A ,+ \H,. As
x$Ht, there exists ye(x — t, x + t~\ such that By^Bx_,. As xe Af\Ht, it
is a point of left-increase of <£>,, and this implies readily that Bx_,= <P,(x).
Hence one of the following two events is necessarily true:

Note now that for any rational number q e Q, there can exist only one x e
(q-t,q + t) such that Bx_, = Bx+t and for all ze(x-t,x + t), Bz^Bx_t.
Hence, almost surely, for all t > 0,

Let us now consider the case where y is a local minimum of B. Note
that any two local minima of B do occur at different heights (as B only
countably many local minima). Hence,

In other words, there exists a surjection of the set of local minima of B
onto the set

which is therefore also at most countable.



This implies (using Proposition l(ii) and (3)) all results dealing with Af
stated in the Theorem. Those concerning A~ are derived via a symmetry
argument. |

5. INVARIANCE PRINCIPLE FOR THE PROFILE FUNCTION

Given a discrete (annihilating or coalescing) particle system started
from the integer lattice points, as described in Section 3, denote by $0(x)
its profile function, i.e., the total charge in the interval between the origin
and the point of coordinate x, at time 0:

where W( •) = B(q) — B(q — •). Hence, combining this with (1) implies that
for all a e (x — t, x),

Hence, H, r\(x — t, x) corresponds exactly to hitting times of its maximum
of the reversed process started at q. More precisely,

But as for all we get

Similarly, for all ze(x — t,x) that is a point of right-increase of <P,, the
previous observation yields readily that

Suppose now for a moment that x e f f , . In particular, this implies
(by continuity of B and because for all ye(x — t,x + t~\,By>Bx_,) that
there exists a rational q > x +1, such that

Finally, putting the pieces together (using (2)), we get that almost
surely, for all t > 0,
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where the m, are i.i.d. charges with E(mt) = 0 and E(mJ) = 1. We now intro-
duce the time-evolved profile

that is the profile function at time t.
The formalism introduced in the previous sections helps us to for-

mulate and immediately prove functional limit theorems (invariance
principles) for the resealed profile function <P(JV) defined as follows:

Using Proposition 1, (iii) and (iv), it is straightforward to check that

Hence we directly conclude the following functional limit theorem for
the profile function evolving in time:

Theorem 4. The sequence (<t>(.ff)(-)) — £/'(<P(N)) converges weakly
in T(R+, D(R)) (endowed with the "uniform uniform topology") to £f(B)
when N-> ao, where B is a two-sided Brownian motion with B0 = 0.

Indeed: This theorem follows directly from the weak convergence
<P(0N)^>B in D(U) and the continuity of £f: D(U) -> T(U+, D(R)).

6. BROWNIAN FLIGHT PROCESS. PARTICLE PATHS
IN COALESCING SYSTEMS

From now on we shall concentrate on the systems of coalescing particles.
More precisely, we are going to study the scaling limit of trajectories of
individual particles in the coalescing ideal gas. For this purpose we introduce

Definition 5. The (Brownian) flight process is

Here, as earlier, W. is a one-dimensional Brownian motion started from 0.



This process consists of countably many linear segments with slopes
± 1 ("flights"). The length of each segment is distributed as the length of
an excursion of Brownian motion.

Proposition 6. (i) The flight process is self-similar in distribution

Proof . (i) follows from the self-similarity of Brownian motion, and
(ii) is a direct consequence of the Arcsine law of JQ !{^,>o} ds (see e.g.,
ref. 14, p. 255). |

The Brownian flight process is important for us, because, as we shall
see below in (7), it is the scaling limit of a trajectory of a coalescing ideal
gas particle.

Consider the coalescing ideal gas system (CIG), as described in
Section 3.2, with the initial particle set A0 = Z, their masses Mx distributed
exponentially with parameter 1, and velocities vx equal to +1 or — 1 with
probability 1/2. Let <P0(x) be the corresponding profile function, as defined
in (4). Let us denote by { t f x ( t ) } t e n + the path of the particle which starts
at x e Z. The motion of the particle follows the motion of the corresponding
discontinuity of <P, = S,<t>0.

From Theorem l(i) and Lemma 3(ii) in ref. 7 it follows immediately
that, for the CIG with initial particle set /, a particle trajectory starting
from x e ~L can be expressed by
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( i i )  T h e  d e n s i t y  o f  r j ( t )  o n  (  - / ,  t )  i s

where (sn,n^Q) is a simple symmetric random walk started from s0 = 0.
Note that in the setup of ref. 7 the space and time coordinates are twice as
large as here. The factor \ in (6) can intuitively be justified by the observa-
tion that a CIG particle trajectory can change its direction at any half-
integer time, while sgn(sk + sk + l) can change only at an even k.

By Donsker's theorem, (6) implies the scaling limit result



Now, we would like to generalise (7) to deal with joint distributions of
finitely many trajectories, and in particular we want to compute the scaling
limit of the collision time of two particles. But the simple representation (6)
works only for one particle path. So we have to construct multiple particle
paths on the same probability space. This can be done, for both "discrete"
and "continuous" coalescing systems, by using the profile function
machinery of Section 3.2 as follows.

Let 0 0 ( - )e£>(R) be an arbitrary initial underlying profile function.
Further on we shall leave out the index 0 and write it simply as <f>( •). We
assume the following natural condition:
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As we shall see in Proposition 7 (see also Fig. 2), this assumption in fact
implies that any two particles will eventually collide. One could (with very
slight modifications) adapt the following construction to a general <P.

We shall use the notation

for any cadlag function /
We say that a particle starts from x e R if $ ( • ) is not constant in the

neighbourhood of x. Let us denote by {£(0, x, f)} ,6R+ the trajectory of the
tagged particle which starts at such a point x. It is defined as follows. Let
h e K be an auxiliary variable.

This construction is illustrated by Figs. 1 and 2.
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Fig. 1. Coalescing ideal gas trajectories q x ( t ) = £ ( 4 > 0 , x , t ) and the underlying profile func-
tions 4>,(x) = (S,&0)(x).

Fig. 2. Coalescing flight processes rix(t) = £(B,x,t) and the underlying profile functions
<P,(x) = (S,B)(x).
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Note that £ is invariant under scaling of <P: For all A > 0, x e R. and
t^O,

It is straightforward to see that h* is the minimum of the underlying
profile function <P, in the vicinity of the tagged particle position at time /:
h*=mm{<t>,(£(<t>, X, t)), <?>,(£(<P,x,t)-)}. Ox(h*) and /*(/;*) are the time
and the spatial location of the "first" collision of the tagged particle at or
after time /. (For Brownian continuous system considered in the next
section, "first" means the time-infimum). l x ( h * ) and rx(h*} are the starting
points of the two particles which take part in this collision and which did
not change their direction of movement before it.

Note that h\-^lx(h) is non-decreasing and that h\-^rx(h) is non-
increasing. Therefore O x ( . ) is non-increasing, and for any <PeD(U) and
V C2 fCPX £ R

From this it is clear that all trajectories £(<£, x, •) are Lipschitz-continuous
of order 1:

Note however that some particles can move with speed slower than 1: For
instance if x is a local minimum of 0, then |<^(0)| < 1.

Suppose that <Z>( •) is not constant in the neighbourhoods of x and
ye R, x < y. Let us define the coalescence time Tx y(<t>) by the formulae:

The term "coalescence time" is explained by

Proposition 7. Let x and y be as in the above definition. Then the
particles which start from x and y coalesce at time Tx, y(<P), i.e.,

First we shall prove a technical lemma.
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Lemma 8. For all h e R, for all x e R,

Moreover, if lx(h + ) < rx(h + ) then

Proof of Lemma 8. By the definition, l.(h), r.(h), O.(h) and x-W are
constant in the interval [lx(h),rx(h)~\. (13) follows directly. (14) follows
from (13) and the left-continuity of lx( •), rx( •), 9X( •) and x*( • )• I

Proof of Proposition 7. (i) First we consider the case t = TXiy.
Since x , y e [ l x ( g x _ y ) , r x ( g x _ y ) ' ] , by (13) we have £,x(Tx,y) = £y(Tx<y).

(ii) Now we consider the case t>TXty. It follows directly from the
definitions, that

By (8) it follows that £ x ( t ) = £y(t).

( i i i )  A n d  f i n a l l y  w e  c o n s i d e r  t h e  c a s e  t < T x  y .  L e t  u s  a s s u m e  f i r s t
that h*(<P, x, 0) > gx y and h*(<t>, y, 0) > gx, y; (Recall that h*($, z, 0) =
min{*(z), <P(z- )})/By (14) we have t,(ex(gXiy + ))=Xx(gx,y+). By the
Lipschitz-continuity (11), this means that

On the other hand, the assumption h*(<t>, y, 0)> gx<y implies that
y > rx(gx, y+), and hence

This proves that £x(t)<£y(t), te [0, 0x(gx,y + )]. An analogous argument
shows that the same inequality holds for t e [0, 6y(gXi y + )]. In the remaining
interval [max.{Ox(gx,y+),Oy(gXiy + ) } , T X i y ' ] both particles move along
non-parallel rectilinear paths, which start at two different points and
collide at time TXiy, according to (i). Therefore, the two paths do not inter-
sect before Tx y.
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In the case h*(0, x, 0) = gx<, : 0x(gx_ y + ) = 0, Xx(gx> y + ) = x, and the
particle moves rectilinearly from time 0 to Tx y, which makes the proof just
simpler. The same holds if /i*(0, y, 0) = gx< y. |

The definition (8) works correctly for the discrete CIG (see Fig. 1 in
the end of the article):

Proposition 9. The CIG particle trajectories f)x(t) defined in the
beginning of this section can be expressed in terms of the underlying profile
function <P = <£0 in the following way:

The proof is straightforward, since in Section 3.2 it is shown that the profile
function <P indeed corresponds to the CIG.

7. COALESCING FLIGHT PROCESSES

The particle path construction of the previous section (8) can also be
applied to the Brownian continuous system: In this case we define the
particle trajectories by

where R B x i-> Bx is the Brownian profile function, i.e., a two-sided
Brownian motion, just as in Section 4. We call the family { q x ( - ) } x e K a

system of coalescing flight processes (in short: CFP). This name is justified
by Propositions 7 and 10.

Proposition 10. (i) The CFP particle trajectories are equi-
distributed with the Flight Process: For all fixed xeR,

(ii) CFP is self-similar in distribution, as space and time scale by the
same factor: For all a > 0,
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Proof . (i) Without loss of generality we assume x = Q. Define the
sets:

The sets MR and ML are countable, so we can list their elements as

For convenience we shall denote a0 = 0. Denote also:

Note that by the above definitions we have

The following lemma states well known pathwise properties of
Brownian motion:

Lemma 11. For almost all Brownian profile functions B.,

(i) {/!,-:/e Z} is dense in ( — 00, 0],

(ii) for any i, j e Z with i = j one of the following two alternatives
holds:

• either ht < hj and in this case cj < pi,

• or hj<hj and in this case a,<aj.
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Indeed, (i) follows from the fact that a.s. the heights of the local
minima of Brownian motion form a dense set in R; (ii) is a consequence
of the fact that a.s. there are no two local extrema of the same hight.

From this simple lemma it immediately follows that the closed inter-
vals [p,, CT,], ieZ are pairwise disjoint and their union is dense in U + .
Given this fact we can define the function IR + 3.? i — > A ^ e R as follows:

In plain words this definition means the following: we take the two
independent (one-sided) Brownian paths Bs, s^O and B'S = B_S, s^O and
we define the processes

It is well known that R. and R'. defined this way will be two independent
Brownian motions reflecting From O.X. is obtained by "gluing together R.
and —R'. according to their local time at 0," i.e., the excursions of R. and
— R( away From 0 are glued together according to the a.s. well defined
order of their occurrence. X. obtained this way is an other Brownian
motion. Finally, it is straightforward to see that in case of a Brownian
profile function (which is a.s. continuous, has no points of increase or
decrease and has no two local extrema of the same height) the definition
(15) of n o ( t ) is equivalent to

(ii) Self-similarity follows From the self-similarity of Brownian
motion and of d; (9), and From (16):
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Now we can compute the law of the coalescence time T X i y = TXty(B)
of two tagged CFP particles (12): Let Z denote a standard stable random
variable of index 1/2 (i.e., that has the same law as the hitting time of 1 by
a standard Brownian motion started from 0). Let W denote a Brownian
motion with W0 = 0, that is independent of Z, and define I1 = I10i \]W,.

Proposition 12. For the CFP system, for any x, y e R : x < y,

In other words, 2T0 j — 1 is distributed with the density

Proof. The first relation in (19) is clear From the self-similarity of
CFP (18). From the definition of Tx,y (12) it is clear that

Conditionally on {Bs, s e [0, 1]}, sup{s < 0 : Bs < I1} and inf{s^l:Bs

</!} — ! are independent and their laws are respectively identical to that
of I\Z (i.e., the hitting time of 7, by x\-^B_x) and (Bl-Il)2Z (i.e., the
hitting time of Ii — Bl by xi-»B{ +x — Bt). Hence, as /[ <0 and II^B^ we
get (using the fact that Z is stable of order 1/2) that

Let us compute the density of (Bt — 2/i)2 Z. By integrating the joint
density of (B^,^), J2/n(a-2b) e-<«-2*>2/2 on {(a,b): a^b, b^O} (see
ref. 14, p. 105) we obtain
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It is well-known that

(see ref. 6, p. 353). Therefore, one easily gets (20).

8. INVARIANCE PRINCIPLE FOR PARTICLE PATHS

The following theorem shows that, under the natural scaling (18), any
finite set of CIG trajectories converges weakly to the corresponding CFP
trajectories:

Theorem 13. (Invariance principle for particle paths). For any
finite set X= {x1,.., xk} a R,

in the topology of uniform convergence on compacts on (C( R +) )*.

First we state the 5-a.s. continuity of a CFP particle path D(R) 3 Bi->
£ ( B , x , - ) in r(R, C(R + )):

Lemma 14. For almost all Brownian profiles B., for all r>0,
f o r  a l l  x e K  a n d  a l l  £ > 0  t h e r e  e x i s t  d  =  8 ( B , x , e , T ) > 0 ,  L  =
L(B,x,e,T)e(-<x>,x) and R = R(B, x, 8, T)e(x, oo) such that for any
profile function B. e Z)(R) if sup{ \SZ - B2\ :L ̂  z ̂  R} <6 then sup{ \£(B, x, t)
-£(B,x,t)\ : O s S / < r } <e.

Proof of Lemma 14. In order to simplify notation we shall denote
£,x(t) = £(B, x, t) and %x(t) = £,(B, x, t). Note first that due to Lipschitz con-
tinuity of t>-*£(B, x, t) (11) for any initial position x and profile function
S, it suffices to prove \£(B,x, t)-£(B,x, t)\ <£ for any r e R + fixed. We
shall prove it for t= \. Let the Brownian profile B. and the initial position
x e R be fixed. We shall exploit the following almost sure properties of the
Brownian profile function: (1) B is a.s. continuous; (2) B a.s. does not have
two or more local extrema at the same hight; (3) almost surely t = 1 is not
a collision time of the trajectory £*(/), i.e., 6~ <\<9+, where 0* are
defined below.
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Denote
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Note that due to the continuity of B., we have

From the definition of the particle trajectories (8) it follows that

From the fact that a.s. there are no two local minima of the same hight, it
follows that almost surely one of the following two alternatives holds:
either l+=l~ <x<r~ <r+, in which case /* and r+ are not local
extrema and r~ is a local minimum of B; or l+ <l~ <x<r~ —r+, in
which case r± and l+ are not local extrema and /~ is a local minimum of
B. Assume the first alternative and denote / = /*. The proof for the second
alternative is analogous. Under this assumption we easily find

Further on we denote

Since there are no two local minima of B. having the same hight and / and
r+ are not local extrema of B, we have

We denote
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and prove that for any B e D ( R )
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From where the assertion of the lemma follows.
Indeed, it is straightforward to check that with this choice of 8 the

assumption in (21) directly implies the following inequalities:

From the first set of inequalities it follows that

Similarly, from the second set of inequalities we get:

Denoting

by the definition of the particle trajectories (8) we have

and
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Clearly, 9~ <0~ and d+ ^0+, so we have B~ < 1 <9+. From Lipschitz-
continuity of the trajectory £x(t) it follows that

Putting all the ingredients together we find

From the obvious bounds \9± — 1)±\^£, \x± ~X±\^e finally we get

Proof of Theorem 13. We shall first show that the finite-dimensional
distributions of f\ converge under the scaling to those of tj:

for any finite sets X= {xl,..., xk} c R and T= {t^..., t,} <=. U+.
Let us extend the definition of ^(f) (8), and hence that of r)x(t) (15),

to all x e R by

For CIG it implies that

Note that

Now the scaling limit (22) follows from Donsker's theorem (ref. 3, p. 151)
i.e.,

and from the 5-a.s. continuity of the functional £(• , x, t): D(R) -> K
(Lemma 14), by ref. 6, Theorem 6.7 on p. 365.
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Now, let us note that, for any fixed x e R, k > 0, the sequence of prob-
ability measures

is tight, since the trajectories are Lipschitz-continuous of order 1 ( 1 1 ) and
uniformly bounded in n. By Corollary 7 in ref. 15, this tightness and (22)
are enough to prove Theorem 13. |

Let us denote, as in the previous section, the coalescence time of CFP
trajectories by TXiy=TXiy(B), and that of CIG trajectories by fx_y =
Tx,y(&\ As one can expect from Theorem 13, an invariance principle holds
for the coalescence times also:

Theorem 15. For any x, y e R:

This theorem can be proven along similar lines as Theorem 13. We safely
leave it to the reader.

Recall that the explicit law of Tx y was derived in Proposition 12.
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